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Abstract 

A cyber attack is launched through a series of computer actions to compromise 

the security (e.g., availability, integrity, and confidentiality) of a computer and network 

system. Attacks on information systems have presented serious threats to the reliable 

operation of information systems. The detection of those attacks plays an important role 

in assuring the reliability of information systems. In this report, we first illustrate a 

process control approach to system modeling for information assurance. A model-based 

design of attack detection techniques is presented to demonstrate how a process model 

of a computer and network system supports cyber attack detection. Then in order to use 

the audit data to capture activities on a computer and network system and detect cyber 

attacks, we develop and present the learning and inference algorithms of probabilistic 

networks with undirected links in this report. The technique of probabilistic networks 

with undirected links is used to represent the symmetric relations of audit event types 

during normal activities, build a long-term profile of normal activities, and perform 

anomaly detection for cyber attack detection. The probabilistic networks, trained with 

the audit data of normal activities, demonstrate a very promising performance in 

detecting attack activities during the testing with the audit data of both normal activities 

and attack activities. 
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1. Introduction 

A cyber attack is an attack on a computer and network system, consisting of computer 

actions (e.g., remote or local connection, computer file access, program execution, etc.) 

to compromise the secure operation of the computer and network system. As we 

increasingly rely on information infrastructures to support critical operations in defense, 

banking, telecommunication, transportation, electric power and many other systems, 

cyber attacks have become a significant threat to our society with potentially severe 

consequences [1-2]. 

A computer and network system must be protected to assure security goals such 

as availability, confidentiality and integrity, through prevention, detection, isolation, 

assessment, reaction, and vulnerability testing. Attack prevention can be enforced 

through firewalls and guards, boundary control with security policies, authentication, and 

encryption. Attack detection identifies cyber attacks being leaked through the fence of 

prevention and acting on a computer and network system. Attack isolation reveals the 

source and path (course of actions or core events) of a cyber attack, leading to observed 

attack symptoms, as well as affected entities (e.g., users, files, programs, hosts, and/or 

domains). Attack assessment determines the degree and nature of damage to affected 

entities with respect to security risk. Attack reaction takes control actions to get an 

attacker out of a computer and network system, maintains the system operation even in a 

degraded mode, and eventually recovers the system back to a normal state. Vulnerability 

testing looks for points (e.g., a weak password) of a computer and network system that 

make the system vulnerable to cyber attacks. 



Information assurance activities present much resemblance to process control 

activities that are usually carried out to assure the safe operation of many engineering 

systems, such as energy generation systems in nuclear power plants. Process control 

activities include: 

• System planning, to design, specify and implement laws and rules governing the safe 

system operation; 

• System control, to assure the safe operation of the system through diagnostic control 

and routine maintenance: 

• Diagnostic control, to monitor on-line system operation data for the presence of fault 

symptoms, trace the source and path of faults, assess the impact of faults, and take 

control actions to recover the system back to a normal state; 

• Routine maintenance, to collect and use the historic data of system component 

reliability to set up an inspection and maintenance schedule, and perform scheduled 

inspection and maintenance. 

When placing information assurance in the context of process control, attack prevention 

is analogous to system planning. Attack detection, isolation, assessment and reaction are 

parts of diagnostic control. Vulnerability testing is similar to routine maintenance. 

An advantage of applying process control to information assurance is to gain a 

system-centered paradigm that assists in modeling a computer and network system and 

designing a model-based information assurance system. Existing techniques for 

information assurance fall short of system modeling, even though system modeling is 

imperative to understand how cyber attacks work in a computer and network system. An 



understanding of system operation and attack mechanisms is the foundation of designing 

and integrating information assurance activities. 

In chapter 2 of this report, we illustrate a process control approach to system 

modeling for information assurance, which leads to a Cyber Attack Control System 

(CACS). A model-based design of attack detection techniques is presented to 

demonstrate how a process model of a computer and network system supports cyber 

attack detection. 

As stated above, a cyber attack is launched through a series of computer actions to 

compromise the security (e.g., availability, integrity, and confidentiality) of a computer 

and network system. For example, a denial-of-service attack attempts to flood the 

communication link to a host machine with large volumes of data packets and thus make 

services from the host machine unavailable. A remote-to-user attack attempts to gain 

unauthorized access to a user account on a host machine and then to damage the integrity 

and confidentiality of data on the host machine through the compromised user account. A 

regular user on a host machine launches a user-to-root attack to gain the privileges of a 

root user and then to compromise the availability, integrity and confidentiality of the host 

machine. The detection of those attacks plays an important role in assuring the reliability 

of information systems. Attack detection signals cyber attacks acting on information 

systems. 

Existing attack detection techniques fall in two major categories: anomaly 

detection and signature recognition [3-6]. For a subject (e.g., user, file, and privileged 

program) of interest, anomaly detection techniques establish a profile of the subject's 

normal behavior (norm profile), compare the observed behavior of the subject with its 



norm profile, and signal attacks when the subject's observed behavior deviates 

significantly from its norm profile. Signature recognition techniques recognize the 

signatures of known attacks, match the subject's observed behavior with those known 

signatures, and signal attacks when there is a match. Signature recognition techniques 

cannot detect novel attacks whose signatures are unknown [7-16]. This study focuses on 

anomaly detection techniques for detection attacks on information systems. 

Anomaly detection techniques consider the deviations of a subject's observed 

behavior from its norm profile as symptoms of attacks. If novel attacks generate behavior 

different from the norm profile, novel attacks can be detected through anomaly detection 

techniques. Several anomaly detection techniques exist using statistical-based, sequences- 

based, logic-based, and rules-based norm profiles [17-30]. In SRI International's 

IDES/NIDES systems, a statistical-based profiling technique is used to represent the 

expected normal behavior of a subject and variance due to noises [20-23]. The statistical- 

based profiling technique overcomes the problems with the sequences-based, logic-based 

and rules-based profiling technique in representing noises and variances. However, SRI's 

statistical-based profiling technique is not robust to the assumption of normally 

distributed data. If data are not close to a normal distribution, the technique cannot 

produce reasonable results. 

In chapter 3 of this report, we present a probabilistic network technique that we 

develop to capture and represent the profile of the normal behavior. Probabilistic 

inference is used for detecting anomalies. Since no specific forms of statistical 

distributions   and  distribution-based   statistical   inferences   are  used  in  the  profile 



representation and anomaly detection, our technique overcomes the problem with the 

normality assumption. 

This paper presents the probabilistic network technique for cyber attack detection 

and the process control approach to cyber attack detection in chapter 2 and in chapter 3 

respectively. 



2. Process Control Approach to Cyber Attack Detection 

In this chapter, we present a model-based design of attack detection techniques to 

demonstrate how a process model of a computer and network system supports cyber 

attack detection. 

2.1. A Process Control Approach to System Modeling 

For large-scale, complex engineering systems, system models are built through levels of 

abstraction to divide and conquer the system complexity by capturing different aspects of 

systems at different levels. Four levels of abstraction have been found important to 

process control of many engineering systems, including nuclear power plants and 

manufacturing systems [1-2]. The four levels are: objective, conceptual, functional and 

physical. 

At the objective level, the goals of a system are stated. The goals of the system are 

transformed into the time-based operational behavior (e.g., states and state transitions) of 

the system at the conceptual level. Each operation at the conceptual level is supported by 

a group of tasks at the functional level. Those tasks take place in a functional architecture 

of the system that describes functional components of the system and their relationships. 

A functional architecture can be implemented in different physical forms. Functional 

tasks are implemented at the physical level through physical actions that occur in the 

physical anatomy of the system. 

Hence, the conceptual level deals with temporal relationships (relationships 

between behaviors at different times) in the system, whereas the functional level and the 

physical  level  concern  spatial  relationships  (relationships  between  components  at 



different locations) in the system. As we move from the objective level to the physical 

level, we shift from a general, abstract understanding of the system to a specific, concrete 

understanding of the system. The system models at different levels are linked in that 

activities and entities at one level are aggregated into activities and entities at a higher 

level, and are decomposed into activities and entities at a lower level. The system models 

at all levels form a complete process model of the system. 

The process model is two-dimensional in that it defines the system at multiple 

levels of abstraction (objective, conceptual, functional and physical) and at multiple 

scales of scope (components, subsystems and system). The dimension of scale may 

consist of more than three scales, if necessary. For example, subsystems can be further 

divided into subsystems of subsystems, and so on. 

We develop a multi-level, multi-scale process model of a computer and network 

system to capture the security-related system behavior [31]. What entities and activities 

of a computer and network system are included in the process model depends on their 

relevance to system security. Figure 2-1 illustrates the process model of a security-aware 

computer and network system. 

We first examine the process model in the dimension of the abstraction levels. 

The objective level states security goals of an entity (component, subsystem or system) 

such as confidentiality, integrity, and availability. The conceptual level describes 

security-critical states and state transitions of an entity. The state-transition model focuses 

on the temporal structure of the entity behavior. The functional level models the spatial 

structure of a functional entity (e.g., user, file, program, process, host, and enclave) which 

exists in the software domain. The spatial structure of a functional entity describes 



functional elements of the entity and functional relationships (e.g., message passing and 

function calls) among those elements. The physical level describes the spatial structure of 

a physical entity (e.g., cables, CPU, memory board, hard disk, printer, and other physical 

devices) that exists in the hardware domain. Hence, the conceptual level deals with 

temporal relationships among states of an entity, whereas the functional and physical 

levels deal with spatial relationships of elements in the entity. 
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Figure 2-1. A process model of a security-aware computer and network system. 

Entities and activities at different levels are associated. For example, the hard disk 

is a physical entity in the hardware domain. If a file resides on the hard disk, there is an 

association between the hard disk and the file. A physical activity (e.g., a "read" action) 



on the hard disk supports a functional activity (e.g., an UNIX "vi" command) on the file. 

A damage to the hard disk at the physical level changes an attribute of the file at the 

functional level and the state of the file from accessible to inaccessible at the conceptual 

level, which further leads to the unavailability of the file at the objective level (see the 

four cells at the components scale from the physical level to the objective level in Figure 

2-1). 

Hence, physical entities are associated with functional entities. Attributes of a 

physical entity are reflected in attributes of associated functional entities. Values of 

attributes of a functional entity at a given time constitute the state of the functional entity 

at that time. States and state transitions of the functional entity are modeled at the 

conceptual level. States or state transitions of the entity are further evaluated into a 

security posture with respect to security goals. 

The physical level is important to detect close-in attacks through hardware 

subversion. However, most cyber attacks are launched through functional entities in the 

software domain. Hence, we focus on cyber attacks through functional entities. When 

building the process model of a computer and network system in our study, we start 

directly from the functional level. 

We now examine the process model in the dimension of scales. At the 

components scale, entities are individual components of a computer and network system, 

such as software components (e.g., files, users, programs, and processes). At the 

subsystem scale, entities are subsystems (e.g., host machines) of the computer and 

network system. At the system scale, there is a single entity - the computer and network 

system as a whole (e.g., an enclave administrated independently by an organization). 



In the process model there are two types of entities: component-wide entities and 

system-wide entities including subsystems and the system. Using the object-oriented 

methodology to represent the process model, an entity is represented by an object with 

attributes and methods (see Figure 2-2). Without the physical level, attributes of an entity 

contains mainly: 

• entity ID, 

• the spatial structure of the entity at the functional level, 

• the temporal structure (states and state transitions) of the entity at the conceptual 

level, 

• a security posture (a secure state, a state violating availability, a state violating 

confidentiality, a state violating integrity, and so on) of the entity at the objective 

level, 

• an activity history (a history of method requests), 

• IW (Indications & Warning) values including a composite IW and IWs from 

individual attack detection techniques, and 

• the current state class. 

A component-wide entity and a system-wide entity differ only in the spatial structure. 

The spatial structure of a component-wide entity describes properties of the entity (see 

the password file in Figure 2-2). The spatial structure of a system-wide entity includes a 

list of elements and their relationships. 

For each entity, we keep a history of activities that have occurred to the entity. 

For example, the history of activities for a file keeps the time when a method is 

10 



requested, which user requests the method, which method is requested, and what outcome 

of the method is (see Figure 2-2). 

When a method of the entity is requested, this event is analyzed by various attack 

detection techniques (discussed later) to produce IW values indicating the likelihood of 

an attack associated with the event. An IW value of 1 denotes the 100% likelihood, 

whereas an IW value of 0 denotes the 0% likelihood. A composite IW value is generated 

by combining IW values from individual attack detection techniques. 

The state class is an aggregate representation of the entity state. For example, 

despite slightly different attribute values, two similar states of the entity may fall into the 

same state class. In Figure 2-1, as we move from a group of components to a subsystem 

at the functional level, we shift our attention from properties of individual components to 

relationships of those components in the subsystem. As we move from the functional 

level of a component to the conceptual level of the component, we shift our attention 

from properties of the component at a given time to state transitions of the component 

over time. For the subsystem at the functional level or the component at the conceptual 

level, we are interested in spatial relationships of components in the subsystem or 

temporal relationships of states for the component. The subsystem may contain a large 

number of components, and the component may have a large number of states over time, 

which all prevent us from passing all detailed state information of a component for 

analysis of spatial or temporal relationships. Instead, we pass only the aggregate 

information of a component to a larger scale or a higher level. In our study, the composite 

IW value and the current state class together present the aggregate information of a 

component to be passed on to a larger scale and a higher level. In the process model, 

11 



information transmission between different scales and different levels involves only 

aggregate information. 

Methods of an entity represent activities that occur to the entity (see Figure 2-2). 

Attributes of an entity are changed by methods of the entity. 
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Figure 2-2. Activities in the process model during a password guessing attack. 
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The process model of a computer and network system is like a security-related 

mirror reflecting activities that actually occur in the computer and network system, 

including both normal and malicious activities. Figure 2-2 shows activities in a UNIX- 

based host machine when an attack is launched to gain the access to this host by guessing 

a user's password repeatedly until success. The numbers in Figure 2-2 indicate the 

sequence of activities. 

The process model provides a structured, systematic view of activities in a 

computer and network system. Activities in the computer and network system are 

captured by sensors which are computer programs monitoring activities of interest to the 

process model. The process model is constantly updated to reflect activities occurring in 

the computer and network system. The design of sensors can be based on what attribute 

information needs to be collected and what methods need to be monitored for each entity 

in the process model. Information at different scales and different levels of the process 

model is analyzed by attack detection techniques to provide layered detection 

mechanisms. Attack isolation and assessment rely on spatial and temporal relationships in 

the process model. Security policies can be specified for entities in the process model at 

different scales and different levels. Therefore, the process model provides a systematic 

framework for design of information assurance. 

2.2. Automated System Modeling 

To assist in system modeling, we develop the following automated system modeling 

techniques: 

• Object-oriented technique for automated creation of class instances, 

• Sensing, probing and testing techniques, 

13 



• Discrimination and classification techniques for state information aggregation, and 

• Statistical techniques to learn spatial and temporal structures in the process model, 

to provide all the information in the process model. 

A repository of object classes must be built manually, one class for each kind of 

entities in the process model (e.g., the file class for all files). Whenever an entity is 

created (or removed) in a computer and network system with a distinct value of the entity 

ID, an instance of the corresponding object class is automatically created (or removed). 

In the process model, event-driven, object-oriented sensors are placed to monitor 

method requests to each component at the functional level. A method request to a 

component results in changes in properties of the component (changes in the spatial 

structure of the component). From spatial structures of all components in the process 

model, all other information in the process model is automatically derived. 

To obtain the current state class for each entity, state information (values of 

attributes along with the current event) is classified automatically using a decision tree 

which is constructed using discrimination and classification techniques (e.g., ID3 for 

decision tree, and CART - Classification and Regression Trees). We use the current event 

and current values of attributes as the classification attributes in a decision tree, and use 

the composite IW value as the target attribute in the decision tree. The decision tree 

groups similar states into a state class by their IW values. 

The spatial structure of a system-wide entity or the temporal structure of each 

entity in the process model are generated by a set of statistical-based attack detection 

techniques (discussed later). Those techniques establish a spatial link between two 

14 



elements or a temporal link between two states using the occurrence frequency of such a 

link. 

The security posture of each entity in the process model is mainly obtained from 

test results. Our CACS uses probes and tests are used in addition to sensors. A sensor 

monitors external events (method requests) to an entity. A probe goes inside the entity to 

obtain values of its attributes. A test initiates actions on the entity (e.g., login as a guest 

on a host) to reveal the security posture of the entity. Information from sensors is used to 

generate an initial hypothesis on a possible attack. The hypothesis can be further verified 

using information from probes and tests. Information from probes and tests is also 

important to attack isolation and assessment. 

2.3. Model-based Attack Detection 

Existing attack detection techniques fall into two major categories: anomaly detection 

and attack signature recognition. Signature recognition techniques store signatures of 

known attacks, match the subject's observed behavior with those known signatures, and 

signal an attack when there is a match. Attack signatures have been characterized as 

strings, event sequences, activity graphs, etc. Petri Nets and rules in expert systems have 

been used to represent attack signature and perform signature recognition. 

Signature recognition techniques cannot detect novel attacks whose signatures are 

unknown. To overcome this limitation, anomaly detection should be used as a 

complement to detect novel attacks. Moreover, the repository of attack signatures must be 

continuously updated to remain useful in changing system configurations, protocols, 

architectures and environments. It is difficult to update a large repository of attack 

15 



signatures manually. We develop data mining techniques for the automated learning and 

update of attack signatures from data of the past attack experience. 

For a subject of interest, anomaly detection techniques establish a profile of the 

subject's normal behavior, compare the observed behavior of the subject with its normal 

profile, and signal attacks when the subject's observed behavior deviates significantly 

from its normal profile. Several profiling techniques have been developed based on 

statistical characteristics [32], predicates in formal logic [33], production rules, and 

strings [34]. The statistical-based technique, as known from EDES/NIDES and 

EMERALD [32], has not yet been effective to deal with many correlated attacks 

involving multiple entities of a computer and network system over time (e.g., multiple 

sessions). When specifying the expected behavior or security policies, production rules 

are more practical than predicates, because formal logic is difficult for most security 

managers to understand and use. Based on the analogy to the human immune system, the 

string-based profiling technique [34] models the system normal behavior as a set of 

binary strings [34]. Problems remain as to the robustness of this technique to noises and 

its expression power. 

None of the above profiling techniques address system modeling to a full scale 

and a full level. Without the full-level, full-scale modeling of a computer and network 

system, questions would always remain as to whether we were missing any system 

objects and any aspects of system behavior that might be used in attacks. Our work 

addresses this problem by providing a conceptual framework for system modeling as well 

as automated system modeling techniques. 

16 



Figure 2-3 and Table 2-1 show two sets of model-based attack detection 

techniques that are developed in our Cyber Attack Control System (CACS). 

Techniques in SET A are applied to individual components at the functional level 

of the process model. Either Petri nets or rules in expert systems can be used to 

implement the signature recognition technique. Both Petri nets and rules in expert 

systems can also be used for the specification technique to specify security policies and 

detect any violations. Statistical process control (SPC) techniques, such as Shewhart 

charts for univariate stationary processes, EWMA (Exponentially Weighted Moving 

Average) for univariate dynamic processes, and Hotelling's T2 for multivariate processes, 

have been successfully used in manufacturing industries to detect faults of manufacturing 

systems by building statistical profiles of system performance. We develop the object- 

oriented application of SPC techniques as statistical-based anomaly detection techniques 

for attack detection. Using the Activity History attribute of the password file in Figure 2- 

2, for instance, EWMA can be applied to measures such as the total number of all method 

requests per unit time, and the total number of a particular outcome per unit time. 

Hotelling's T2 can be applied to measures such as the relative distribution of method 

requests among different users per unit time, and the relative distribution of different 

methods per unit time. 

The specification of policies and attack signatures is similar across all scales and 

all levels. In SET B policies and attack signatures involve multiple components, 

subsystems, or states, whereas in SET A, policies and attack signatures involve single or 

multiple properties of a single component at the functional level. 

17 
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Figure 2-3. Model-based attack detection techniques. 

Table 2-1. The fit of model-based attack detection techniques in the process model. 

Levels 
Scales 

Components Subsystems System 
Objective SETB SETB SETB 
Conceptual SETB SETB SETB 
Functional SETA SETB SETB 

SET B differs from SET A only in statistical-based anomaly detection techniques. 

Statistical-based anomaly detection in SET B must correlate aggregate information from 

multiple components, subsystems or states, and model probabilistic relationships for 

spatial or temporal structures rather than dealing with individual properties of 

components as in SET A. The Bayesian network technique [35] and Hidden Markov 

Models (HMM) technique are added in SET B to fill in the gap left by existing attack 

18 



detection techniques on the detection of coordinated attacks at larger scales and higher 

levels. These two techniques learn probabilistic relationships from information of normal 

activities in a computer and network system, and use learned structural profiles to 

determine the likelihood of incoming activities to be normal. Bayesian networks and 

HMMs trained with attack data are unlikely to distinguish between incoming normal 

activities and incoming attack activities. Due to the heterogeneous nature of attacks, both 

incoming normal and attack activities would be considered different from attacks used in 

training. 

2.4. Conclusion 

The process control approach to cyber attack detection is promising for several reasons. 

First, it provides a conceptual framework to model a computer and network system in 

which both normal and attack activities occur. As normal and attack activities are 

systematically organized, understood and captured in the process model of a computer 

and network system, information assurance techniques can be designed effectively to 

cover attacks at various levels and scales of the system for layered, complimentary 

defense mechanisms. 

As the system is modeled from a process control perspective, well-established 

techniques in process control such as SPC can be applied to overcome problems with 

existing techniques. Using engineering process control (EPC, such as feedback control) 

techniques, various information assurance functions (planning, detection, isolation, 

assessment and reaction) can be tightly interwoven into a feedback control loop for 

enhanced responsiveness. Research is required to adapt system modeling, SPC and EPC 
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techniques for traditional engineering systems into the problem context of information 

assurance. 
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3. Probabilistic network Technique For cyber Attack Detection 

3.1. Problem Definition 

In this section we describe our attack detection problem, including the data source, 

problem representation, training data, and testing data. 

3.1.1. Data Source 

A computer and network system within an organization typically includes a number of 

host machines (e.g., machines running a UNIX operation system and machines running 

the Windows NT operating system) and communication links connecting those host 

machines. Currently two sources of data have been widely used to capture activities in a 

computer and network system for attack detection: network traffic data and audit trail 

data (audit data). Network traffic data contain data packets traveling over communication 

links between host machines to capture activities over communication networks. Audit 

data capture activities occurring on a host machine. In this study, we use audit data from 

a UNIX-based host machine (specifically a Sun SPARC 10 workstation with the Solaris 

operating system), and focus on attacks on a host machine that leave trails in audit data. 

The Solaris operating system from the Sun Microsystems Inc. has a security extension, 

called the Basic Security Module (BSM). The BSM extension supports the monitoring of 

activities on a host by recording security-relevant events. Activities on a host machine are 

captured through a continuous stream of audit events. 
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3.1.2. Training and Testing Data 

In this study, we use a sample of the audit data recording both normal activities and 

attack activities on host machines with Solaris 2.5. Normal activities and attack activities 

are simulated to produce these audit data. Normal activities are simulated according to 

normal activities observed in a real-world computer and network system [5]. A number of 

attacks are also simulated, including password guessing, use of symbolic links to gain the 

root privilege, attempts to gain an unauthorized remote access, etc. In the sample, the 

audit data of normal activities consist of 3019 audit events, and the audit data of attack 

activities consists of 1223 audit events. We use the first part of the audit data for normal 

activities as our training data set, and use the remaining audit data for normal activities 

and attack activities as our testing data set. The training data set consists of 1613 audit 

events for normal activities. The testing data set consists of 1406 audit events for normal 

activities and 1223 audit events for attack activities. 

3.1.3. Knowledge Representation 

An BSM audit record for each event contains a variety of information, including the 

event type, user ED, group ID, process ID, session ID, the system object accessed, and so 

on. Studies [28-30] show that types of events in information systems can be used to 

effectively detect many attacks. Hence, in this study we extract and use the event type 

from the record of each audit event. There are 284 different types of BSM audit events 

from Solaris 2.5 that is used to collect the audit data. 

For attack detection, we want to build a long-term profile of normal activities, and 

to compare the activities in the recent past to the long-term norm profile for detecting a 

significant difference.  We define  activities  in the recent past by opening up  an 
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observation window of size N on the continuous steam of audit events to view the last N 

audit events from the current time t: 

Et-(N-i)=t-N+i, ■••, Et, where E stands for event. 

At the next time t+1, the observation window contains Et-N+2, •••, Et+i. In this study, we 

let N equal to 100, because attack activities produce in average about 100 audit events in 

the data sample. 

We define 284 variables (Xu ..., X284) to represent 284 event types, respectively. 

We investigate two ways to measure the activities in the recent past and obtain values of 

the 284 variables from the last N audit events. One way, called the count measurement, is 

to count the number of a certain event type appearing in the observation window. For 

example, if there are 10 audit events among the N number of audit events in the 

observation window fall into the 1st event type, then Xt has the value of 10. If the 3rd 

event type does not show in the observation window at all, then X3 has the value of 0. 

Another way, called the existence measurement, is to use 1 and 0 to represent the 

existence and non-existence of a certain event type in the observation window. For the 

same example, since the 1st event type shows up in the observation window (10 times), 

then Xi has the value of 1. Since the 3rd event type does not appear in the observation 

window at all, then X3 has the value of 0. Hence, for each observation window we can 

obtain a vector X including the values of (Xi, ..., X284)- 

3.1.4. Attack Detection Problem 

Before training the norm profile, the stream of the 1613 audit events in the training data 

set is viewed through a moving window, which in turn creates 1514 (1613-99) window 
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slices of audit events for the window size of 100 audit events. There is no window slice 

created for each of the first 99 audit events, because the current audit event and previous 

audit events are not sufficient to make up a complete window slice. For each window 

slice of audit events, a vector of (Xi, ..., X284) is obtained. Hence, from the training data 

of the 1613 audit events, we obtain 1514 vectors that we use for training a probabilistic 

network as the norm profile. 

For the testing, 1223 audit events for attack activities and 1406 audit events for 

normal activities are viewed through a moving window, creating totally 2431 window 

slices (1124 window slices for attack activities and 1307 window slices for normal 

activities, numbered from No.1-1124 and No. 1125-2431). Each of the first 99 audit 

events for either attack activities or normal activities does not create a window slice, 

because the event and previous events together are not sufficient to form a complete 

window slice of 100 audit events. 

For each window slice, a vector of (Xi, ..., X284) is obtained and evaluated against 

the norm profile to yield the probability that the normal profile supports this vector. The 

larger the probability is, the more support the vector receives from the normal profile, and 

the more likely the vector is a part of normal activities. The smaller the probability is, the 

less likely the vector is normal, and the more likely it is a part of attack activities. 

3.2. Learning and Inference of Probabilistic Networks 

The probabilistic network technique is developed based on the theory of Bayesian 

networks. In this section, we briefly review the theory of Bayesian networks. Then we 

describe the probabilistic network technique. 
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3.2.1. Bayesian Networks 

Bayesian networks are also called Bayesian belief networks, because they are used to 

represent and infer the beliefs in a set of variables through probabilistic representation 

and reasoning [36-44]. In a Bayesian network, a set of variables make up the nodes of the 

Bayesian network, and a set of directed links connect pairs of nodes. A directed link from 

node X to node Y represents a dependency of Y on X, such as a direct influence of X on 

Y, a causal relationship of X and Y (X causing Y), a temporal relationship of X and Y (X 

preceding Y), and so on. X is called a parent of Y. Each variable has a number of states. 

For example, variable X may represent a particular event and has two states denoting the 

occurrence or non-occurrence of this event. Each node has a conditional probabilistic 

table that describes the probabilistic distribution of states for the corresponding variable 

given the states of its parent nodes. If there is no directed link to the node, the conditional 

probabilistic table becomes simply a probabilistic table of states for the corresponding 

variable. A Bayesian network is represented through a directed acyclic graph. No directed 

cycles are allowed in a Bayesian network. 

The information in a Bayesian network provides a joint probability distribution of 

all the variables Xi, ..., Xn in the Bayesian network. If we label these variables in an 

order that is consistent with their directed links in the Bayesian network, 

P(Xl,...,Xn) 

= P(Xn | Xn - 1, ..., Xl) * P(Xn - 1, ..., X\) 

= f[P{Xi\X-h...,Xx) (1) 

= f\P(X\ parents(X)) 
1=1 
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Hence, the conditional probability tables in a Bayesian network provide a decomposed 

representation of the joint probability table for all the variables in the Bayesian network. 

From this joint probability table, we can derive the probability of any state involving any 

combination of the variables. Since many pairs of variables are conditionally independent 

(no directed links between them in a Bayesian network), the joint probability table is 

simplified into the conditional probability tables in a Bayesian network. 

In many real-world problems, we are not interested in the direction of dependence 

but the strength of dependence. For example, in this study we are interested in how likely 

various audit events correlate (co-occur) in a moving window during normal activities 

(for a norm profile) or attack activities (for an attack profile). We may consider the causal 

or temporal relationship of audit events as the direction of dependence between audit 

events. However, since one audit event may cause or precede another audit event in some 

activities or vice versa in other activities, a directed cycle between these two audit events 

exists, which is not allowed in a Bayesian network. Therefore, in this study we consider 

the strength of dependence without the direction, where the dependence between audit 

events is characterized by the co-occurrence of audit events. We also need to develop the 

learning and inference algorithms for a probabilistic network with undirected links. 

3.2.2. Probabilistic Networks with Undirected Links 

To build a probabilistic network with undirected links, we go back to the joint probability 

table of the variables where no direction is implied. Then we simply the joint probability 

table into a probabilistic network with undirected links. An undirected link is placed 

between a pair of variables if they have a strong dependency. A joint probability table is 
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created for a group of variables which are fully dependent on each other. For example, if 

variables A, B, C and D are fully linked to form a fully connected graph, a joint 

probability table is created for the relation of variables A, B, C and D. Hence, the joint 

probability table of all the variables are simplified into a probabilistic network with 

undirected links, or in other terms, a set of smaller joint probability tables for all the 

nodes and relations. 

3.2.3. Learning of Joint Probability Tables 

The joint probability table for a node involving a single variable X is estimated from the 

training data as follows [40]. 

P(X = i) = ?^ (2) 
N 

where 

N is the total number of observations in the training data, 

Nx=i is the number of observations with X in state i, and 

P denotes the probability that X is in state i. 

The joint probability table for a relation involving more than one variable such as Xi, ..., 

Xk is estimated from the training data as follows [40]. 

P(Xi = n, ,Xk = ik)=  (3) 
N 

where 

N is the total number of observations in training data, 

Nx=i is the number of observations with Xi in state ij, ..., and Xk in state ik, and 

P denotes the probability that Xi is in state ij, ..., and Xk is in state 4- 
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3.2.4. Learning of the Structure of a Probabilistic Network 

The structure of a probabilistic network consists of nodes and undirected links between 

nodes. Given a set of variables and a number of their observations in the training data, 

nodes in a probabilistic network are constructed by creating one node for each variable. 

Undirected links between variable nodes are constructed by learning the dependence 

between variables from the training data. 

The structure is learned through two phases. Phase I is to learn an initial structure 

of the probabilistic network. Phase II uses an iterative procedure of search and scoring to 

find the optimal structure of the probabilistic network. 

To construct the initial structure of the probabilistic network in Phase I, we use 

the chi-square test of independence to determine the strength of dependence Q between a 

pair of variables Xj and Xj as follows. 

Pki = Pk*P.i (5) 

P, = P(Xi = k) = ^ (6) 
N 

P^P{Xj = l) = ^l (7) 

Q^T^rl^e'dt (8) 

T{x)=[t^e-dt (9) 

where 
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X2 denotes the chi-square statistic, 

N is the total number of observations, 

Nxi=k, xj=i is the number of observations with Xj in state k and Xj in state 1, 

Nxi=k is the number of observations with X; in state k, 

Nxj=i is the number of observations with Xj in state 1, and 

d denotes the degree of freedom which is equal to (m-l)*(n-l), m is the number of 

states that Xj has, and n is the number of states that Xj has. 

The larger the X2 value is, the larger difference exists between the observed frequency 

and the expected frequency of Xj in state k and Xj in state / (expected under the 

hypothesis of X and Xj are independent). The larger the X2 value is, the smaller the Q 

value is, the less likely Xj and Xj are independent, and the stronger dependence exists 

between Xj and Xj. 

After computing the strength of dependence between every pair of the variables, 

we rank the pairs of variables by the ascending order of Q values. The pair of the 

variables that is ranked first has the strongest strength of dependence. We establish the 

links between the first B pairs of the variables, with a constraint that a maximum of D 

links can be established from a variable. The parameters B and D are introduced to 

control the complexity of the initial structure of the probabilistic network, so that links 

are established for only strongly dependent pairs of variables, while limiting the number 

of links from each variable. For example, considering the following rank of variable pairs 

with Q values. 

1. (XI, X2) with Q = 0.10 

2. (X2, X3) with Q = 0.15 
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3. (X2, X4) with Q - 0.20 

4. (X3, X4) with Q = 0.25 

5. (X2, X5) with Q = 0.30 

6. (X5, XI) with Q = 0.35 

7. (X5, X4) with Q = 0.40. 

If B is set to 5 and D is set to 3, the initial structure of the probabilistic network looks like 

the graph in Figure 3-1. There is no link between the pair of (X2, X5), because at the 

maximum three links are allowed for variable X2. There is no link between the pair of 

(X5, X4), because the total number of links is limited up to 5. 

After obtaining the initial structure of the probabilistic network, we search and 

find all fully connected graphs that exist in the initial structure of the probabilistic 

network, from the largest fully connected graphs to the smallest fully connected graphs 

which include only two nodes. For each fully connected graph, we establish a relation 

node. For example, in Figure 3-1 the largest fully connected graph has three nodes, X2, 

X3, and X4. A relation node R234 is established. Next, we find two fully connected graphs, 

each of which has only two nodes, and establish two relation nodes, R12 and R15. Then we 

obtain a joint probability table for each variable node using formula (2) and a joint 

probability table for each relation node using formula (3). With the structure (nodes and 

links) and the joint probability tables, the initial probabilistic network is completed. 

Phase II is based on the minimum description length principle to search for the optimal 

structure of the probabilistic network that best supports the training data [40]. The initial 

probabilistic network is evaluated to produce the following score [40]. 
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(a) 

(b) 

Figure 3-1. An example of the initial structure of a probabilistic network and relations among 

variable nodes. 

Score = A*DL(TD\PN) + C*DL(PN) (10) 

where 

TD stands for the training data, 

PN stands for the probabilistic network, 

DL(TD | PN) denotes the description length of the training data, given the 

probabilistic network, which measures the support (fitness) of the probabilistic 

network to the training data (the better the support, the smaller the description 

length), 
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DL(PN) represents the description length of the probabilistic network which 

measures the complexity of the probabilistic network, 

A is a weighting factor on the measure of how well the probabilistic network 

supports the training data, and 

C is a weighting factor on the complexity measure of the probabilistic network. 

In general, the more complex the probabilistic network is, the better support 

(fitness) the probabilistic network can provide to the training data (including noises in the 

training data). The probabilistic network should closely fit the training data, while 

preventing the overfitting of the probabilistic network to the training data. We use a 

following measure of support as the description length of the training data given the 

probabilistic network. 

DL{TD\PN)= ]T-log10(P(O,|/W)) (11) 
OieTD 

where Oj is an observation in the training data, and P(Oj | PN) is the probability that Oj is 

supported by the probabilistic network. P(Oj | PN) is determined by the equations in the 

next section. The smaller the DL(TD | PN) value is, the better support the probabilistic 

network provides to the training data. 

The overfitting problem is often controlled using the Minimum Description 

Length (MDL) principle [40] to minimize the complexity of a model. The complexity of 

a probabilistic network depends on three factors: the number of variable nodes, the 

number of relation nodes, and the size of the joint probability table at each node. If we 

count the number of cells in each joint probability table, the sum of the counts over all the 

joint probability tables accounts for all the three factors. Hence, we let the sum of the 

counts be the description length (DL) of the probabilistic network. 
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In general, a more complex probabilistic network leads to a better support of the 

probabilistic network to the training data. Our goal is to look for a probabilistic network 

that minimizes the weighted sum of DL(DN | PN) and DL (PN) in formula (10), subject 

to the inherently inverse relationship between DL(DN | PN) and DL (PN). 

We conduct a heuristic search for an alternative probabilistic network with a 

smaller score (a better probabilistic network) than the initial probabilistic network. The 

only way to change the initial probabilistic network is to change its links, since the 

number of variable nodes in the probabilistic network is fixed and the joint probability 

tables are determined from the training data. In the heuristic search, we explore the one- 

link change for all possible pairs of variable nodes in the initial probabilistic network. If 

there is a link between a pair of variable nodes, a one-link change for the pair of variable 

nodes is to remove the link. If there is no link between the pair of variable nodes, a one- 

link change is to add a link between the pair of variable nodes. For a probabilistic 

network with n nodes, there are n*(n-l)/2 possible pairs and thus the same number of 

possible one-link change. Each one-link change leads to a new structure of the 

probabilistic network. For each new structure, we compute the joint probability tables and 

the evaluation score in formula (10). We then compare the evaluation scores for the n*(n- 

l)/2 probabilistic networks, and select one with the smallest evaluation score. Then the 

next round of search and scoring continues with the selected probabilistic network, until 

the evaluation score no longer improves (reaching a global or local minimum). 
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3.2.5. Inference Algorithm 

The support of the probabilistic network to an observation Oj in the training data in 

formula (11), P(Oi | PN), is determined as follows. The observation Oj is a vector of (Xt, 

...,Xn). 

P(Xu...,X„) = P(Xi)*P(X2\Xl)*...*P(Xn\Xn-i,...,Xl) (12) 

The conditional probability P(Xk | Xk_i Xi) represents the updated joint probability 

table of Xk based on new evidences on Xk-i, ..., Xi, where k = 2, ..., n. Each P(Xk | Xk-i, 

..., Xi) term in formula (13) is determined through probability update and propagation as 

shown below. 

If Xi and Xj are linked through relation R, P(Xj | Xi) is determined by the 

following formulas which are similar to those for probability updating in a Bayesian 

network [24]. 

P(m) (R) = normalize 

P(n) (Xj) = normalize 

Po»-»(R)pW(Xi) 

1  Vo)(*0 

3(«-l) 
(Xj) 

marginalize[p(m)(R)] 

Pm(Xj) 

(13) 

(14) 

where 

R denotes a relation, 

Xj and X are variable nodes involved in relation R, 

P(m)(R) denotes the updated joint probability table of relation R based on the new 

evidence on Xj, 

P(m"1}(R) denotes the updated joint probability table of relation R based on another 

new evidence which is also involved in R, 

P(0)(R) is the prior state distribution of R before any update, 

34 



P(n)(Xj) denotes the updated joint probability table of Xj based on the updated 

joint probability table P(m)(R) if there is any update of R, or based on the prior 

joint probability table P(0)(R) if there is no update of R, 

P(nl)(Xj) denotes the updated joint probability table of Xj based on another 

relation which also involves Xj, and 

P(0)(Xj) is the prior state distribution of Xj before any update. 

Formula (13) is used to update the joint probability table of relation R from a new 

evidence on Xj. Formula (14) is used to update the joint probability table of Xj from the 

updated joint probability table of relation R. 

Figure 3-2 shows a probability network consisting of four variable nodes (Xi, X2, 

X3, and X4) and two relation nodes (R12 and R234). The initial joint probability tables are 

given in part (a) of Figure 3-2. Part (b) of Figure 3-2 shows the computations for the 

probability update and propagation. Given a new evidence on Xi, the updated joint 

probability table of X2 is determined by first updating the joint probability table of 

relation Ri2 using formula (13). 

P(Xx = y,Xi = y) = 0.2 * — = 0.56 
0.36 

P(Xi = y,Xi = n) = 0.16*—— = 0.44 
0.36 

P(Xi = n,Xi = v) = 0*— = 0 
0.64 

P(Xi = n,Xi = n) = 0.64*— = 0 
0.64 

Since the sum of the above four values is 1, the normalization is not needed. We then 

update the joint probability table of X2 by marginalizing XI out of the updated joint 

probability table of relation R12 as follows. 
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P(X2)={y=0.2,n=0.8} 

P(Rl2) = 
X2 = v X2 = n 

Xi=y 0.2 0.16 
X2 = n 0 0.64 

P(Xi) = {y=0.36, n=0.64} 
P*(X,)={y=l,n=0} 

*: indicates an evidence. 

P(X*)={y=0.1,11=0.9} 

X^ 

P(X3)={y=0.27,n=0.73} 
P*(X3)={y=l,n=0} 

P(R234) = 
X2 X4 X3 P(R234) 

V V y 0.02 
n V y 0.07 
V n y 0.18 
n n y 0 

Y Y n 0 
n Y n 0.01 

Y n n 0 
n n n 0.72 

(a) 

P*(X2) = {y=0.56, n=0.44} P*(X4)={y=0.16,n=0.84} 

P*(Rl2) = 
X2 = y X2=n 

X,=y 0.56 0.44 
X2 = n 0 0 

P*(X,)={y=l,n=0} P*(X3)={y=l,n=0} 

P*(R!34) = 
X2 X4 X3 P*(R234) 

y y y 0.094 
n V y 0.064 

V n y 0.842 
n n y 0 
y y n 0 
n y n 0 
V n n 0 
n n n 0 

~"^   indicates the direction of probability update and propagation. 

(b) 

Figure 3-2. Probability update and propagation in a probabilistic network. 

P{Xi = y) = 0.56 + 0 = 0.56 

P(Xi = n) = 0.44 + 0 = 0.44 

For another example, P(X4 | X3, Xi) requires the updated joint probability table of X4 

given the new evidences on Xi and X3. To determine P(X4 | X3, Xi), we update the joint 

probability table of R234 using the updated evidence on X2. The updated joint probability 
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table of R234 is again updated using the new evidence on X3. By marginalizing X2 and X3 

out of the twice-updated joint probability table of R234, we obtain the updated joint 

probability table of X4 as shown in part (b) of Figure 3-2. 

3.3. Probabilistic Networks For Cyber Attack Detection 

As discussed in section 3.1, we obtain two sets of (Xj, ..., X284) vectors from the training 

data set: one set for the count measurement, and another set for the existence 

measurement. The learning and inference algorithms of the probabilistic network apply to 

variables with a finite number of discrete values as states. In the set of the (Xj, ..., X284) 

vectors with the existence measurement, each variable has two states: existence (with the 

value of 1) and non-existence (with the value of 0). In the set of the (Xi, ..., X284) vectors 

with the count measurement, each variable takes a count number. Although a count is not 

exactly a continuous value, it is a discrete value with possibly no upper limit. For our 

attack detection problem, the upper limit of a count is equal to the size of the moving 

window. That is, the largest count for a certain type of audit event is equal to the total 

number of audit events in the moving window, when all audit events in the moving 

window are the same type. If we take each possible value of the count as one state of a 

variable, the variable may end up with possibly too many states. Since many of such 

states are just slightly different and do not always appear, it would be a waste of 

computer resources if we take each possible count as one state. Such a waste of computer 

resources is not desirable, especially when we deal with a large-scale problem. 

Therefore, we want to transform each set of (Xj, ..., X284) vectors with the count 

measurement so that variables take a reasonable number of discrete states. A variety of 

methods exist to discretize continuous values [40-44]. Those methods generally fall in 

37 



two categories. One category of the methods determine a set of dividing points to yield 

the discrete segments of a continuous variable by evaluating whether this set of dividing 

points lead to a better fitted model to the training data. Another category of the methods 

determine a set of dividing points using a fixed formula, leading to either a linear 

segmentation or non-linear segmentation. In this study, we use the following non-linear 

segmentation formula to simplify the computation in learning: 

State = 1 + log 2 Count   if Count > 0 (15) 

-0 ifCount-0 

The two kinds of measurements (count and existence) produce two different sets 

of (Xi, ..., X284) vectors to train two different probabilistic networks, respectively. Each 

probabilistic network had 284 variable nodes. The parameter B for the maximum number 

of links in a probabilistic network was arbitrarily set to 70. The parameter D for the 

maximum number of links from a variable node was arbitrarily set to 3. The weighting 

factor for the entropy of the training data in a probabilistic network was arbitrarily set to 

9. The weighting factor for the description length of a probabilistic network was 

arbitrarily set to 1. 

The testing data contain the audit data for both attack activities and normal 

activities. When a vector of (Xi, ..., X2g4) from a window slice of the testing data is 

presented to a probabilistic network trained with the audit data of normal activities (the 

norm-based probabilistic network), the probability that this vector is supported by the 

norm-based probabilistic network is determined by formula (12). The larger the 

probability is, the more likely activities in the window slice are normal. 
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It is possible that a vector of (X\, ..., X284) from the testing data presents a state of 

a variable and/or a state of a relation among several variables which are not encountered 

during the training and are thus not covered by the joint probability tables of the trained 

probabilistic network. While using formula (12) to infer the support probability of the 

trained probabilistic network to this vector of (Xj, ..., X2g4), we assign a state, which is 

not available in the trained probabilistic network, a probability of 0.00001 which is close 

to zero and is much smaller than any existing probabilities in the joint probability tables 

of the trained probabilistic network. 

We do not assign the probability of zero to such states, because the probability of 

zero would make the final result from formula (12) become zero. This would make it 

impossible to distinguish normal activities with noises from attack activities, since noises 

in normal activities may introduce new states. The amount of new states from noises in 

normal activities is expected much less than the amount of new states from attack 

activities. By assigning a small probability rather than zero to the new states, the smaller 

effect of noises in normal activities on the final result of formula (12) becomes 

distinguishable from the larger effect of attack activities on the final result of formula 

(12). 

3.4. Results And Discussions 

During the testing, we compute the probabilities that the two trained probabilistic 

networks support the testing data. Table 3-1 summarizes the statistics of the testing 

results. For each probability network, we compute the minimum, maximum, average and 

standard deviation of the probabilities that are produced for each kind of the testing data 
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(the testing data of normal activities - normal data, and the testing data of attack activities 

- attack data). 

Table 3-1. The statistics of the testing results. 

Training Measurement Testing Minimum Maximum Average Standard Deviatio 
Normal data Existence Normal data 4.89E-05 2.64E-01 1.29E-01 1.08E-01 

Normal data Existence Attack data 3.46E-113 1.48E-21 7.90E-24 1.08E-22 

Normal data Count Normal data 6.04E-18 1.26E-02 1.96E-03 2.24E-03 

Normal data Count Attack data 4.28E-127 1.09E-29 8.74E-32 8.44E-31 

Attack data Existence Normal data 9.51E-47 3.00E-33 5.28E-34 1.14E-33 

Attack data Existence Attack data 4.84E-82 4.78E-05 1.01E-07 2.02E-06 

Attack data Count Normal data 8.14E-46 7.13E-26 2.83E-28 4.03E-27 

Attack data Count Attack data 1.56E-82 6.60E-08 4.80E-10 4.72E-09 

The two norm-based probabilistic networks, which are trained with the normal 

data (audit data of normal activities) for two kinds of measurements respectively, produce 

much larger probability values for the normal data than the attack data during the testing. 

As shown in formula 2, the probabilities for event numbers 1125-2431 (the normal data) 

are much larger than the probabilities for event numbers 1-1124 (the attack data). A 

larger probability means more support of the norm-based probabilistic networks to the 

data. For the existence measurement, there exists a huge gap between the minimum 

probability for the normal testing data (4.89E-05) and the maximum probability for the 

attack testing data (1.48E-21). For the count measurement, there also exists a huge gap 

between the minimum probability for the normal testing data (6.04E-18) and the 

maximum probability for the attack testing data (1.09E-29). 

These results indicate that for both kinds of measurement we are able to clearly 

distinguish the normal activities from the attack activities during the testing, using any 

probability value in the gaps as the decision threshold. If the probability of the testing 

data from a moving window is greater than the decision threshold, the activities in the 
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moving window are classified as normal. Otherwise, the activities in the moving window 

are classified as attack. 

In overall, the probability for the count measurement on the testing data within a 

moving window is smaller than the probability for the existence measurement on the 

same testing data for two reasons. First, we use the small probability value of 0.00001 for 

a new state that appeared in the testing but did not show in the training, when we use 

formula (12) to calculate the final probability of a vector from the moving window. 

Second, the count measurement create more of such new states. 

In summary, the norm-based probabilistic networks demonstrate the promising 

performance in detecting attack activities during the testing, regardless of which 

measurement method is used. The results from this study encourage the further 

investigation of the probabilistic network technique and its application to attack 

detection. 

Note that the results of this study are obtained using an arbitrary set of parameters 

for the probabilistic networks, such as parameter B for the maximum number of links in a 

probabilistic network, parameter D for the maximum number of links from a variable 

node, the weighting factor for the entropy of the training data in a probabilistic network, 

and the weighting factor for the description length of a probabilistic network. In general, 

the larger parameters B and D are, the better a probabilistic network can fit the training 

data. However, a better fit does not necessarily lead to a better testing performance due to 

the over-fitting problem. Just as many training parameters in an artificial neural network 

must be determined empirically for a particular application [40], these parameters for a 

probabilistic network can be determined empirically using some training and testing data. 

41 



References 
[1]    Rasmussen, J. (1986). Information Processing and Human-Machine Interaction. 

New York, NY: North-Holland. 

[2]    Ye, N.  (1996).  A hierarchy of system-oriented knowledge for diagnosis of 

manufacturing system faults. Information and System Engineering, 2(2), 79-103. 

[3]    T. Escamilla. Intrusion Detection: Network Security beyond the Firewall. New 

York: John Wiley & Sons, 1998. 

[4]    H. Debar, M. Dacier, and A. Wespi. "Towards a taxonomy of intrusion-detection 

systems," Computer Networks, 31, pp. 805-822,1999. 

[5]    R. Lippmann, D. Fried, I. Graf, J. Haines, K., Kendall, D. McClung, D. Weber, S. 

Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. "Evaluating intrusion 

detection systems: The 1998 DARPA off-line intrusion detection evaluation." In 

Proceedings of the DARPA Information Survivability Conference and Exposition. 

Los Alamitos, CA: IEE Computer Society, pp. 12-26, January, 2000. 

[6]    T.    Bass.    "Intrusion    detection    systems    and    multi-sensor    data    fusion," 

Communications of the ACM, 43(4), pp. 99-105, April 2000. 

[7]    U. Lindqvist, and P. A. Porras. "Detecting computer and network misuse through 

the production-based expert system toolset (P-BEST)," In Proceedings of the 1999 

IEEE Symposium on Security and Privacy, IEEE, Oakland, CA, May 1999. 

[8]    P. A. Porras, and P. G. Neumann. "EMERALD: Event monitoring enabling 

responses to anomalous live disturbances," In Proceedings of NISSC, October 

1997. 

42 



[9]    P. G. Neumann, and P. A. Porras. "Experience with EMERALD to date," In 

Proceedings of the 1st USENIX Workshop on Intrusion   Detection and Network 

Monitoring, Santa Clara, California, April 1999, pp. 73-80. 

[10] W. Lee, and S. J. Stolfo. "Data mining approaches for intrusion detection," In 

Proceedings of the 7th USENIX Security Symposium, San Antonio, Texas, January 

1998. 

[11] W. Lee, S. J. Stolfo, and K. W. Mok. "A data mining framework for building 

intrusion detection models," In Proceedings of the 1999 IEEE Symposium on 

Security & Privacy, May 1999. 

[12] W. Lee, S. J. Stolfo, and K. W. Mok. "Mining audit data to build intrusion detection 

models," In Proceedings  of the 4th  International  Conference  on Knowledge 

Discovery and Data Mining, New York, NY, August 1998. 

[13] W. Lee, S. J. Stolfo, and K. W. Mok. "Mining in a data-flow environment: 

Experience in network intrusion detection," In Proceedings of the 5th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining 

(KDD '99), San Diego, August 1999. 

[14] G. Vigna,  and R. Kemmerer. "NetStat:  A network-based intrusion detection 

appoach." In Proceedings of the 14th Annual Computer Security Applications 

Conference, Scottsdale, Arizona, December 1998, 

http://www.cs.ucsb.edu/~kemrn/netstat.html/. 

[15] G. Vigna, S. T. Eckmann, and R. A. Kemmerer. "The ST AT tool suit," In 

Proceedings of the DARPA Information Survivability Conference and Exposition. 

Los Alamitos, CA: EEE Computer Society, pp. 46-55, January, 2000. 

43 



[16] S. Kumar. Classification and Detection of Computer Intrusions. Ph.D. Dissertation, 

Department of Computer Science, Purdue University, West Lafayette, Indiana, 

1995. 

[17] C. Ko, G. Fink, and K. Levitt. "Execution monitoring of security-critical programs 

in distributed systems: A specification-based approach." In Proceedings of the 1997 

IEEE Symposium on Security and Privacy, pp. 134-144, 1997. 

[18] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. 

Levitt, C. Wee, R. Yip, and D. Zerkle. "GrIDS - A graph-based intrusion detection 

system for large networks," In Proceedings of the 19th National Information 

Systems Security Conference, October 1996. 

[19] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Uppuluri. "Building 

survivable systems: An integrated approach based on intrusion detection and 

damage containment," In Proceedings of the DARPA Information Survivability 

Conference and Exposition, Volume II Los Alamitos, CA: IEE Computer Society, 

pp. 84-99, January, 2000. 

[20] D. E. Denning. "An intrusion-detection model," IEEE Transactions on Software 

Engineering, SE-13(2), pp. 222-232, February 1987. 

[21] D. Anderson, T. Frivold, and A. Valdes. Next-generation Intrusion Detection 

Expert System (NIDES): A Summary. Technical Report SRI-CSL-97-07. Menlo 

Park, CA: SRI International, May, 1995. 

[22] H. S. Javitz, and A. Valdes. "The SRI statistical anomaly detector." In Proceedings 

of the 1991 IEEE Symposium on Research in Security and Privacy. May 1991. 

44 



[23] H. S. Javitz, and A. Valdes. The NIDES Statistical Component Description of 

Justification. Technical Report A010. Menlo Park, CA: SRI International, March, 

1994. 

[24] Y. Jou, F. Gong, C. Sargor, X. Wu, S. Wu, H. Chang, and F. Wang. "Design and 

implementation of a scalable intrusion detection system for the protection of 

network infrastructure." In Proceedings of the DARPA Information Survivability 

Conference and Exposition. Los Alamitos, CA: IEE Computer Society, pp. 69-83, 

2000. 

[25] W. DuMouchel, M. Schonlau. "A comparison of test statistics for computer 

intrusion detection based on principal components regression of transition 

probabilities," In Proceedings of the 30th Symposium on the Interface: Computing 

Science and Statistics. 

[26] H. Debar, M. Becker, D. Siboni. "A neural network component for an intrusion 

detection system," In Proceedings of the 1992 IEEE Computer Society Symposium 

on Research in Security and Privacy, Oakland, CA, May 1992, pp. 240-250. 

[27] A. K. Ghosh, A. Schwatzbard, and M. Shatz. "Learning program behavior profiles 

for intrusion detection." In Proceedings of the 1st USENIX Workshop on Intrusion 

Detection and Network Monitoring, Santa Clara, California, April, 1999, 

http://www.rstcorp.com/~anup/. 

[28] S. Forrest, S. A. Hofmeyr, and A. Somayaji. "Computer immunology." 

Communications of the ACM, 40(10), pp. 88-96, October, 1997. 

[29] H. Debar, M. Dacier, M. Nassehi, and A. Wespi. "Fixed vs. variable-length patterns 

for detecting suspicious process behavior," In Proceedings of the 5th European 

45 



Symposium  on  research  in  Computer  Security,   Louvain-la-Neuve,  Belgium, 

September 16-18, 1998, pp. 1-15. 

[30] C. Warrender, S. Forrest, and B. Pearlmutter. "Detecting intrusions using system 

calls: Alternative data models," In Proceedings of the 1999 IEEE Symposium on 

Security and Privacy, pp. 133-145. 

[31] Ye, N., Hosmer, C, Giordano, J., and Feldman, J. (1998). Critical information 

infrastructure protection through process modeling and model-based information 

fusion. In Proceedings of the Information Survivability Workshop 1998, pp. 197- 

201. 

[32] http://www.csl.sri.com/intrusion.html. 

[33] http://seclab.cs.ucdavis.edu. 

[34] Forrest, S., Hofmeyr, S. A., and Somayaji, A. (1997). Computer immunology. 

Communications of the ACM, 40(10), October, 88-96. 

[35] Ye, N., Giordano, J., Feldman, J., and Zhong, Q. (1998). "Information fusion 

techniques for network intrusion detection". In Proceedings of the 1998 Information 

Technology Conference, pp. 117-120. 

[36] F. V. Jensen. The Instruction to Bayesian Networks. New York: Springer, 1996. 

[37] J. Suzuki. "Learning Bayesian belief networks based on the MDL principle: An 

efficient algorithm using the branch and bound technique." IEICE Transactions on 

Information and Systems, Vol. E82-D, No. 2, pp. 356-367, February, 1999. 

[38] J. Liu, and M. C. Desmarais. "A method of learning implication network from 

empirical data: Algorithm and Monte-Carlo simulation-based validation." IEEE 

46 



Transactions on Knowledge and Data Engineering, 9(6), November/December, pp. 

990-1004, 1997. 

[39] W. L. Buntine. "Operations for learning with graphical models." J. of Artificial 

intelligence Research, 2, pp. 159-225, 1994. 

Http://www.cs.washington.edn/research/jair/home.html. 

[40] T. M. Mitchell. Machine learning. Boston: McGraw-Hill, 1997. 

[41] J. Cheng, D. Bell, and W. Liu. "Learning Bayesian networks from data: An efficient 

approach based on information theory." Http://www.cs.ualberta.ca/~icheng/lab.htm. 

[42] R. Hofmann, and V. Tresp. "Discovering structure in continuous variables using 

Bayesian networks". In Advances in Neural Information Processing System 8, 

Cambridge MA: MIT Press, 1996. Http://www7.informatik.tu-muenchen.de/~hofinannr. 

[43] U. M. Fayyad, and K. B. Irani. "Multi-interval Discretization of continous-valued 

attributions for classification learning." In R. Bajcsy (Ed.), Proceedings of the 13th 

International Joint Conference on Artificial Intelligence. Morgan-Kaufmann, pp. 

1022-1027. 

[44] U. M. Fayyad, and K. B. Irani. "On the handling of continuous-Valued attributes in 

decision tree generation" Machine learning, 8(1), pp. 87-102, January, 1992. 

«U.S. GOVERNMENT PRINTING OFFICE:      2001-710-038-10184 

47 





MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of Information Systems Science 

and Technology to meet Air Force unique requirements for 

Information Dominance and its transition to aerospace systems to 

meet Air Force needs. 


